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Abstract– About 80% to 90% of governmental and business data collections
contain address information. In many cases, address records are captured
and/or stored in a free-form or inconsistent manner. There are many causes
to dirty data: misuse of abbreviations, data entry mistakes, control informa-
tion hiding, missing fields, spelling, outdated codes etc. Due to the ‘garbage
in, garbage out’ principle, dirty data will distort information obtained from
it. The purpose of address cleaning is to maximize the value of address data
and ensure that every address is spelt correctly and properly structured.
This improves accuracy and standardization in mailing, boosts company im-
age, reduces mailing costs, and through geocoding opens up a number of
opportunities to support strategic decisions through accurate spatial analy-
sis. We report the implementation of a role based address cleaner. In this
address cleaner we define indicators and grammars for address cleaning and
thus make the cleaning process configurable.
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1. Introduction

Most real world address collections contain noisy, incomplete
and incorrectly formatted information [1, 2, 3, 4]. Address data is
often captured and stored with typographical and phonetical vari-
ations. Moreover, such data may be recorded or captured in vari-
ous, possibly obsolete formats, and data items may be missing or
contain errors [5]. For address data to be useful and valuable, it
needs to be cleaned and standardized into a well defined format
[6, 7]. For example various abbreviations should be converted
into standardized forms, and postcodes should be validated using
official postcode lists. Address cleaning and standardization are
important first steps in many applications [1, 2, 8]. The cleaning
and standardization of address is especially important for data in-
tegration, to make sure that no misleading or redundant informa-
tion is introduced (e.g. duplicate records). Besides elimination of
duplicates [9], the integration process contains the transformation
of data into a form desired by the intended application and the en-
forcement of domain dependent constraints on the data [10]. The
main task of address cleaning and standardization is the conver-
sion of the raw input address into well defined, consistent forms
and the resolution of inconsistencies in the way information is
represented or encoded [11].
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The main objective for collecting and processing address data
is to fulfill different tasks in (i) administration, e.g., to keep track
of the employees in a company, the customers of our company,
or the sales volume of our companies branches, (ii) supporting
business process, e.g., using the customers address list for direct
mailing to advertise new products. Consider a company using
a list of consumers with their addresses and buying habits and
preferences to advertise a new product by direct mailing. Invalid
addresses cause the letters to be returned as undeliverable. People
duplicated in the mailing list account for multiple letters being
send to the same person, leading to unnecessary expenses and
frustration [10].

Usually the process of address data cleaning cannot be per-
formed without the involvement of a domain expert, because the
detection and correction of anomalies requires detailed domain
knowledge. The ability for comprehensive and successful ad-
dress cleansing is limited by the available knowledge and infor-
mation necessary to detect and correct anomalies in address [10].

The existence of anomalies in real-world address data moti-
vates the development and application of address cleansing meth-
ods [10, 12]. With our implemented role based address cleaner
we are now able clean address data more correctly. About 1.58
Million addresses across South Africa were cleaned with this
cleaner and success rate was very high. Whenever cleaner failed
to handle any row address, we did necessary configuration in
xml files where we defined indicators and grammars and thus our
cleaner was optimized most.

2. Existing Approaches for Data Cleaning

Muller H et al. showed different existing approaches for data
cleaning in [10]. Here in the following we summarize these
cleaning techniques.

1. AJAX: AJAX [5, 12] is an extensible and flexible frame-
work attempting to separate the logical and physical levels
of data cleansing. The logical level supports the design of
the data cleansing workflow and specification of cleansing
operations performed, while the physical level regards their
implementation. AJAX major concern is transforming ex-
isting data from one or more data collections into a target
schema and eliminating duplicates within this process. For
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this purpose a declarative language based on a set of five
transformation operations is defined. The transformations
are mapping, view, matching, clustering, and merging.
2. FraQL: FraQL [13, 14] is another declarative lan-
guage supporting the specification of a data cleansing pro-
cess. The language is an extension to SQL based on an
object-relational data model. It supports the specification of
schema transformations as well as data transformations. at
the instance level, i.e., standardization and normalization of
values. This can be done using user-defined functions. The
implementation of the user defined function has to be done
for the domain specific requirements within the individual
data cleansing process.
3. Potter’s Wheel: Potter’s Wheel [3] is an interactive data
cleansing system that integrates data transformation and er-
ror detection using spreadsheet-like interface. The effects
of the performed operations are shown immediately on tu-
ples visible on screen. Error detection for the whole data
collection is done automatically in the background. A set
of operations, called transforms, are specified that support
common schema transformations without explicit program-
ming. These are value translations, that apply a function to
every value in a column, One-to-one mappings that are col-
umn operations transforming individual rows, and Many-to-
many mappings of rows solving schematic heterogeneities
where information is stored partly in data values, and partly
in the schema. The anomalies handled by this approach are
syntax errors and irregularities.
4. ARKTOS: ARKTOS [15] is a framework capable
of modelling and executing the Extraction-Transformation-
Load process (ETL process) for data warehouse creation.
Data cleansing is an integral part of this ETL process which
consists of single steps that extract relevant data from the
sources, transform it to the target format and cleanse it, then
loading it into the data warehouse. A meta-model is spec-
ified allowing the modelling of the complete ETL process.
The single steps (cleansing operations) within the process
are called activities. Each activity is linked to input and out-
put relations. The logic performed by an activity is declar-
atively described by a SQL-statement. Each statement is
associated with a particular error type and a policy which
specifies the behaviour (the action to be performed) in case
of error occurrence.
5. IntelliClean: IntelliClean [16, 17] is a rule based ap-
proach to data cleansing [18] with the main focus on dupli-
cate elimination [19]. The proposed framework consists of
three stages. In the Pre-processing stage syntactical errors
are eliminated and the values are standardized in format and
consistency of used abbreviations. It is not specified in de-
tail, how this is accomplished. The Processing stage rep-
resents the evaluation of cleansing rules on the conditioned
data items that specify actions to be taken under certain cir-
cumstances. There are four different classes of rules. Dupli-
cate identification rules specify the conditions under which
tuples are classified as duplicates. Merge/Purge rules spec-
ify how duplicate tuples are to be handled. It is not specified
how the merging is to be performed or how its functionality
can be declared. If no merge/purge rule has been specified,
duplicate tuples can also manually be merged at the next

stage. Update rules specify the way data is to be updated
in a particular situation. This enables the specification of
integrity constraint enforcing rules. For each integrity con-
straint an Update rule defines how to modify the tuple in
order to satisfy the constraint. Update rules can also be used
to specify how missing values ought to be filled-in. Alert
rules specify conditions under which the user is notified al-
lowing for certain actions.

There is no cleaning technique that specially focuses on ad-
dress cleaning. As about 80% to 90% of governmental and busi-
ness data collections contain address information [8] so accuracy
in address cleaning is vital and should be handled specially. Our
technique gives special focus on address cleaning and its accu-
racy is high comparing to existing techniques for data cleaning.
Also as our technique is role based, any kind of address cleaning
is possible just defining grammars there is no need to change the
s/w system. We are hope our technique will play an important
role in data cleaning technology.

3. Description of Our Role Based Address Cleaning Process

We define indicators and grammars [20, 21, 22, 23] for address
cleaning process and make the cleaning process configurable.
There are two supporting files:

a. Indicator List File: An ‘indicator’ is a type of address
that helps to retrieve meaningful information from an un-
formatted raw address using grammars. ‘Street’, ‘Building’,
‘PO Box’ etc are few example of common indicators used.
An indicator may have synonyms. For example, ‘Avenue’
and ‘Street’ are synonym indicators whereas ‘Building’ and
‘House’ are also synonym. The xml file ‘IndicatorList.xml’
attached with GAC package contains all the indicator names
and their synonyms.

b. Grammar File: Grammars are rules for address cleaning.
These are defined in an xml file named “AddressCleaning-
Grammar.xml”. The file is attached with GAC package.

The address cleaning process goes through two major steps:

a. Preprocessing: Some preprocessing is done on unformat-
ted raw address so that a number of ‘smart’ tokens can be
constructed from raw address. Each token have some ‘at-
tribute (Token type, Token value etc)’.

b. Cleaning: Grammars are applied on constructed smart to-
kens.

Let us discuss the whole process with a sample input string.

Sample Input String: Unit 10 Pink garden building

a. Preprocessing: Preprocessing of an unformatted raw ad-
dress consists of several sub steps. The steps are described
below with our sample input string.
I. Alphanumeric/Numeric Tagging: Tokenize the space
delimited input string & mark alphanumeric/numeric
tokens.
Before this step, the input string is: Unit 10 Pink garden
building
After this step, the input string is: Unit, [N]10, Pink,
garden, building
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Here comma is put between two space-delimited token.
“[N]” stands for alphanumeric/numeric value and precedes
that token.

II. Indicator Tagging: Presence of any indicator in input
string is identified and tagged.
Before this step, the input string is: Unit, [N]10, Pink, gar-
den, building
After this step, the input string is: [I=UnitNoName]Unit,
[N]10, Pink, [I=Building]garden, [I=Building]building
Here if the token value matches with ‘IndicatorTitle’ type
indicator or with its synonym then “[I=IndicatorTitle]” is
put in front of that token.
III. Construct Smart Tokens: Input string processed at
step-I & step-II is tokenized [24]. Each token repre-
sents a smart object having information of its own. From
these tokens smart tokens are constructed as bellow - In-
put string to this step: [I=UnitNoName]Unit, [N]10, Pink,
[I=Building]garden, [I=Building]building
Generated smart tokens:

Element-1:
TokenValue = Unit
TokenType = Indicator
IndicatorTitle = UnitNoName

Element-2:
TokenValue = 10
TokenType = Numeric
IndicatorTitle = “”

Element-3:
TokenValue = Pink
TokenType = String
IndicatorTitle = “”

Element-4:
TokenValue = garden
TokenType = Indicator
IndicatorTitle = Building

Element-5:
TokenValue = building
TokenType = Indicator
IndicatorTitle = Building

Here (I) The order of the constructed smart tokens is signif-
icant. This order is preserved as same as they appeared in
unformatted raw address. (II) Tokens are called ‘smart’ as
each of the tokens contain information of what type of to-
ken it is. Token types may be – Number, Indicator, String,
Undefined etc.
IV. Change of Token Type if needed (Preprocessing spe-
cial cases): Change TokenType of one or more smart token
(if needed) depending on the presence of some other partic-
ular token in particular direction in the input string.

Consider our sample input string again: [I=UnitNoName]Unit,
[N]10, Pink, [I=Building]garden, [I=Building]building
Here both “garden” and “building” is Building Type indicator.
But it’s clear that ‘garden’ actually stands here as part of building
name, not indicator. That is, desired output is [Building]=”Pink
garden”. So TokenType of “garden” should be changed from In-
dicator to String before grammar templates are applied.

Following grammar of preprocessing does this task:

<ProcessSpecialInput>
<RootToken TokenType=”Indicator”>Building </RootToken>
<TargetToken TokenType=”Indicator” SearchDirection= ”Backward”
Span=”SingleLine” Position=”Adjacent”> Building</TargetToken>
<HandleTargetToken>

<ChangeTo>String</ChangeTo>
</HandleTargetToken>
</ProcessSpecialInput>

According to the above grammar –

(1) If a building type indicator is found [Root Token]
(2) And if, on backward direction of root token, a second build-

ing type indicator is found [Target Token]
(3) And if they are adjacent and in same single line (they are not

separated by comma or other delimiter in user string)

Then, change TokenType of that second indicator from Indicator
Type to String Type. In our sample example, according to the
grammar, RootToken = “building” (Element-5) and TargetToken
= “garden” (Element-4). The constraints are fulfilled. So, Token-
Type of “garden” should be changed from TokenType Indicator
to TokenType String. Thus the smart tokens now look like:

Element-1:
TokenValue = Unit
TokenType = Indicator
IndicatorTitle = UnitNoName

Element-2:
TokenValue = 10
TokenType = Numeric
IndicatorTitle = “”

Element-3:
TokenValue = Pink
TokenType = String
IndicatorTitle = “”

Element-4:
TokenValue = garden
TokenType = String
IndicatorTitle = Building

Element-5:
TokenValue = building
TokenType = Indicator
IndicatorTitle = Building

After the above (I) to (IV) tasks of preprocessing are per-
formed on unformatted raw input address, we now have a number
of formatted smart tokens. These smart tokens are now suitable
for cleaning grammars to be applied on them in next step of role
based address cleaning.

Cleaning: We have a number of cleaning grammars defined in
“AddressCleaningGrammar.xml” file. Each of the grammar is
applied on the set of constructed smart tokens one by one. Thus
the raw address is gradually filtered and at the end, we find the
cleaned outputs of the raw address.

The set of smart tokens we’ve got already from our input string
after preprocessing are:

Element-1:
TokenValue = Unit
TokenType = Indicator
IndicatorTitle = UnitNoName

Element-2:
TokenValue = 10
TokenType = Numeric
IndicatorTitle = “”

Element-3:
TokenValue = Pink
TokenType = String
IndicatorTitle = “”

Element-4:
TokenValue = garden
TokenType = String
IndicatorTitle = Building

Element-5:
TokenValue = building
TokenType = Indicator
IndicatorTitle = Building
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The following two grammars would be responsible and would
clean our sample input:

GRAMMER NO – G1:
<ProcessField>
<BaseToken TokenType=”Indicator”>UnitNoName</BaseToken>
<!– Searching will always start at “BaseToken” –>
<RequiredTokens>
<RequiredToken TokenType=”Indicator” SearchDirection=”Any”>
Building</RequiredToken>
<!– Tokens that are needed to be presented in the set of smart tokens –>
</RequiredTokens>
<ProcessFieldInfo>
<TokenType>Number</TokenType>
<!– Type of token to be read –>
<ReadDirection>Any</ReadDirection>
<!–The direction, in which reading will occur (starting at “BaseToken”) –>
<ReadNumberOfTokens>1</ReadNumberOfTokens>
<!– How many token will be read in that particular direction –>
<OutputFieldName>UnitNo</OutputFieldName>
<!– Name of the output field where cleaned token value will go –>
</ProcessFieldInfo>
<ProcessFieldInfo>
<TokenType>Indicator</TokenType>
<ReadDirection>NA</ReadDirection>
<!–‘ReadDirection’ values can be Backward / Forward / Any / NA etc. –>
<!–ReadDirection ‘NA’ means value of BaseToken itself will go to Output Field
–>
<OutputFieldName>UnitNoName</OutputFieldName>
</ProcessFieldInfo>
</ProcessField>

GRAMMER NO – G2:
<ProcessField>
<BaseToken TokenType=”Indicator”> Building</BaseToken>
<ProcessFieldInfo>
<TokenType> String </TokenType>
<ReadDirection>Any</ReadDirection>
<ReadNumberOfTokens>5</ReadNumberOfTokens>
<!– Allow to read maximum no of 5 string type token if found –>
<OutputFieldName> Building </OutputFieldName>
</ProcessFieldInfo>
</ProcessField>

Let us discuss how these cleaning grammars do the tasks:
When the set of smart tokens will go through grammar no G1,

BaseToken is matched with Element-1 of intelligent vector. De-
fined required token (BuildingType Indicator) is also found in the
set (Element-4). Thus conditions are fulfilled and this grammar
is applicable for our intelligent vector. Each block under the tag
“ProcessFieldInfo” corresponds to reading token values for a par-
ticular output field. Reading will starts at BaseToken. However,
reading in a particular direction continues until –

I. Desired Read Token Type is found and read successfully
II. Another Indicator type token is found in the reading direc-

tion
III. Begin or end of the set of tokens is reached

Cleaned values will be passed to proper output fields:

[UnitNo] = 10
[UnitNoName] = Unit

Secondly, when the set of smart tokens will be filtered by
grammar no G2, BaseToken value is “Building” type indica-
tor and it is matched with Element-4. No other “Required” or

“NotRequired” token is defined here. Thus this Grammar is also
applicable. When set of smart tokens goes through this template,
we will get the cleaned output:

[Building] = Pink garden building

Thus our raw unformatted address is cleaned. Following is the
screen shot of our system -

Postal Code Computation: It is assumed that a postal code con-
sists of 4-digit number. The raw unformatted address is searched
for the presence of any valid postal code. When a 4-digit number
is found, its validity as a postal code is checked using postal code
hierarchy. If it is found in hierarchy, then the decision finally
depends on few cases:

Case-1: If any leading zero is found in the 4-digit number, then
it is certainly a valid postal code. The number is retrieved as
postal code and ‘erased’ from the raw address prior to indicators
processing. Following is the screen shot of our system with this
case -

Case-2: If no leading zero is found but the 4-digit number ap-
pears after suburb name in the input string, then it is also a valid
postal code. The number is retrieved as postal code and ‘erased’
from the raw address prior to indicators processing. Following is
the screen shot of our system with this case –

Case-3: If no leading zero is found and the 4-digit number
doesn’t appear after suburb name, then the decision gets pend-
ing. The number is retrieved as postal code but “left” in the raw
address prior to indicators processing assuming that it also could
be a street number etc. After indicator processing is done, it is
checked again whether that 4-digit number still remains in Rest
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Field. If it still remains in the Rest Field, then it is actually a
postal code, otherwise not. Following two are the screen shots of
our system with this case –

“1200” is considered here as Street Number as no other street
number is found

“1400” is postal code as Street Number =1026 is found in input
string

Town & Suburb Retrieval:

Before indicators processing is done, presence of any valid
suburb or town is checked in the input string using the hierar-
chy. If any valid town or suburb found, they are retrieved but
‘left’ in the raw address prior to indicators processing assum-
ing that the retrieved town or suburb actually might be part of
building name, street name etc. For example, “Hatfield Avenue”
could be a valid street name though ‘Hatfield’ itself a valid sub-
urb.

After indicator processing is done, it is checked again if al-
ready retrieved town or suburb name still remains in Rest Field.
If they still remain in the Rest Field, they are actually valid town
or suburb, otherwise not.

4. Output of our System

We have tested our system for 130 different formatted raw ad-
dresses and found it giving accurate result. Following are some
of them –

Input
Output

Postal Code Street No Street Name Building Building No Unit Name Unit
unit no 99A abc building abc building unit no 99A
unit no 99 & 100 6th wasa
building

6th wasa
building

unit no 99 & 100

pqr building no 99 Laan
street no 77 zzz

77 Laan street pqr building 99

99 abc building no 77 xyz
street

77 xyz street abc building 99

77 street xyz 99 building abc 77 street xyz building abc 99
12 central plaza road no 77 12 central plaza

road
12 central plaza building no
99

central plaza
building

12 no 99

6 street 77 77 6 street
6 street 77, no 99 abc build-
ing

77 6 street abc building 99

6 street, unit 99 abc building 6 street abc building 99
abc building 99, xyz street xyz street abc building 99
xyz street abc building no 99 xyz street abc building no 99
abc building, 12 street 99 99 12 street abc building
0018 xyz stree 0018 xyz street
xyz street hatfield 1200 1200 xyz street
xyz street no 99 abc building 99 xyz street abc building
77 12th way 77 12th way
unit no 2345678 abc building 1200 xyz street abc building unit no 2345678
no 99 abc building 77 xyz
street

xyz street abc building 77 no 99

no 77 xyz street no 99 abc
building

77 xyz street abc building 99
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5. Conclusion

Addresses are often captured in noisy, incomplete and incor-
rect format. Therefore it is important that such data is trans-
formed into a clean and standardized format before further pro-
cessing. Correct and proper formatted addresses are important
for governmental and businesses. Our address cleaner can clean
and properly format raw addresses efficiently and effectively.
Also our cleaner is reconfigurable by changing the xml files, so it
can be optimized more and more as time goes without any change
in the software code.
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